What are Main Differences between Lab, Pilot, Demonstration and Commercial Plant in A Nutshell ?

On this Page :

Nowadays, many companies have been constantly transforming from production-and operation-based company to technology-providing company in order to gain an advantage in the modern market. customer needs are importance. Therefore, these companies realize that the importance of investing in research & development & engineering (R&D&E) are crucial. For reason, high-volume production is indispensable. Knowledge of scaling up from the small beaker to the commercial production becomes importance. Large-scale production, especially in new products, it is very difficult to avoid testing and trialing between the laboratory and commercial scale, known as pilot plants and demonstration plants.

1st Difference: Main Objective

In commercial-scale production, main reasons often are to maximize profit, minimize total investment, operate process with high reliability & safety, and achieve economies of scale. On the other hand, laboratory research is completely different for commercial-scale production, because main goals are exploring, screening, benchmarking new products with existing technology, regardless focusing on production that make a profit. Therefore, equipment and operation might be different from the commercial-scale production. Moreover, there are various constraints that make it difficult to apply standard of commercial scale to design lab scale consistently.

When starting to scaleup, pilot plants are often considered as the first option, especially in improvement of existing process that can be completed in this scale. Other words, pilot plant is carried out additional/specified experiment to confirm some critical phenomena where laboratory-scale experiment is not feasible or virtual.

Generally, the demonstration plant is usually used to provide confident information. In the case of a new or novel process/equipment, demonstration plant could generate specified procedure, inspire confidential in management & customer, and product sample for marketing test.

2nd Difference: General Operating Condition

For a large-scale production, selection of the type and quality of feedstock is very important. It is necessary to select wider range of acceptable quality of feedstock (minimize cost of feedstock). If catalyst is required, it might be in tons-scale catalyst used. Continuous operation is general, because the cost of startup and shutdown are very expensive (continually operate without unnecessary downtime).

High flexibilities in laboratory scale is essential for producing new products, features, functions are required. Experiment should be started up shutdown easily in order to increase the number of trials per unit time advantage. Synthetic or/and simulated real feeds are sometime used for specific experiments (effect of recycle, etc.) For experimental conditions, it is generally preferable to be carried out in constant of temperature and pressure (Isothermal & isobaric) due to limitations of equipment.

Pilot plant can be almost operated similarity to commercial-scale conditions because of some tools, equipment and location being convenient, which it can generate more realistically operational than laboratory). Pilot plant still allows smoothly startup and shutdown. In addition, pilot plant might be often built in/around commercial plant, research centers located near factories. Real reactants are actually easy to transport and high availability. Therefore, pilot plant can be operated continuously for months. However, it still has to operate in constant temperature and pressure conditions.

Connect with our
Competency
Connect
featured insights
Process Scale-Up
Article
Bridging the Gap – Understand a Key Differences Between a Small Beakers to Larger Sizes.
The journey from a laboratory experiment to a commercially viable process is challenging step i.....
OSVARD
Process Scale-Up
Article
Bridging the Gap – Understand a Key Differences Between a Small Beakers to Larger Sizes.
The journey from a laboratory experiment to a commercially viable process is challenging step i.....
OSVARD
Engineering Design
Article
Why is Ideal flow pattern crucial for upscaling Fixed-bed reactor ?
The challenge in fixed-bed reactor scale up is partial similarity of laboratory, pilot, and commerci
OSVARD
Chemical Technology Development
Article
Benefiting from a “Green Premium” ? What would We Capture and Why would We Need It ?
The Green Premium refers to the additional cost associated with choosing a product, service, or ....
OSVARD
Process Scale-Up
Article
Transition from Lab Testing to Pilot Scale.
Historically, scaling up from the laboratory to a pilot stage has been a crucial step before progres
OSVARD

Warning: Attempt to read property "name" on bool in /home/oliveira/domains/osvard.com/public_html/wp-content/themes/osvard-rev3/template-parts/query/featured-insights-where-tag-eq-article-sorted-by-random.php on line 53
Article
How to Successfully Implement your Better Catalysts in Existing Processes
Replacing a novel catalyst into an existing industrial operation is not easy task, requiring compreh
OSVARD
Simulation and Digitalization
Article
Can We Believe the Simulation Results ?
"Can We Believe the Simulation Results?" is a question across various fields, especially in engi....
OSVARD
Chemical Technology Development
Article
Top 10 Mistakes Kill Timing in Your New Product Launch in the Chemical Industry.
Timing your product launch refers to the strategic planning and execution of introducing a new p....
OSVARD
High Performance Culture
Article
How to properly apply inert bed dilution for catalyst testing in fixed-bed reactor
Nowadays, computing systems with extremely high computational power, well-known as High performance
OSVARD
Process Scale-Up
Article
To Make it Perfect: Where Should You Set Up Your Pilot/Demonstration Plant?
In the development of chemical industry, "pilot plant" is frequently used of innovation and expe....
OSVARD
High Performance Culture
Article
How to Conquer the Loop of Death Valley
To ensure the success in catalyst development, the business direction and engineering design must be
OSVARD
Engineering Design
Article
Too Small to be Viable, Small Modular Nuclear Reactors (SMNRs)
the NuScale project faced a significant cost increase, with the target price for power generatio....
OSVARD
Chemical Technology Development
Article
H2 or kWh – Evaluating the Potential of Hydrogen and Electron Economies in Decarbonization
Hydrogen's potential for decarbonization lies in its versatility. It can be produced from water.....